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The augmented-plane-wave method is adapted to the diamond and zinc-blende lattices by in-
cluding both “nonflat” and “nonspherical” corrections to the usual “muffin-tin” potential. The
former are treated exactly while the latter are treated perturbatively. The method is tested
for silicon where “nonflat” corrections are as large as 3.4 eV with “nonspherical” corrections
less than 0.4 eV. Plane wave convergence is superior to the orthogonalized-plane-wave
method. The atomic-sphere radius was varied from 2.15q, to 1.35a, with energy changes of
less than 0.03 eV, Nonflat matrix elements are easily computed by use of a spherical-har-

monic expansion of the potential due to point charges.

Multipole-lattice-sum coefficients are

given for the fcc, diamond, and zinc-blende lattices.

I. INTRODUCTION

Until quite recently all calculations using the
augmented-plane-wave (APW) method! assumed a
potential of the “muffin-tin” form, namely constant
outside touching atomic spheres and spherical in-
side. For materials with high coordination num-
bers this approximation should be quite good and
the APW method has been very widely applied to
such cases.

For materials with tetrahedral coordination the
muffin-tin approximation is very poor and band-
structure calculations have usually been done with
the orthogonalized-plane-wave (OPW) method. 2

It has always been recognized that the muffin-
tin approximation was merely a computational con-
venience which was in no way essential to the APW
method. Yet, it has been only in the past year that

practical “non-muffin-tin” applications have been
made. There are two separate contributions to
the non-muffin-tin corrections: the “nonflat” part
of the potential outside the atomic spheres and the
“nonspherical” part of the potential within the
spheres. The nonflat part of the problem involves
computing plane-wave matrix elements of the po-
tential over the region outside the atomic spheres.
This is easily done for plane waves. However, a
Fourier representation of the potential is too slow-
ly convergent to be useful because of the Coulombic
nature of the ionic potential. Hence the “obvious”
approach to the nonflat problem cannot be made.
The nonspherical part of the problem can be
straightforwardly approached via perturbation
theory but the number of terms which couple goes
up very rapidly with the angular momentum.

The non-muffin-tin calculations which have ap-
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peared offer different solutions to the above prob-
lems. The most complete treatment of non-muffin-
tin corrections is that of Rudge.® He makes a
multipole expansion of the charge density inside
the atomic spheres and computes the potential due
to a lattice sum of multipoles by a “generalized
Ewald method.” He has evaluated the lattice sums
for the body-centered lattice. Rudge treats the
nonspherical part of the potential by perturbation
theory. He applies his method to lithium for which
he finds the non-muffin-tin corrections are not
very important.

Koelling?* has included non-muffin-tin corrections
in his recent calculations on grey tin. He has found
corrections of the order of 1 to 2 eV from the
“nonflat” potential but has not explicitly calculated
the nonspherical corrections which should be
smaller.

Koelling’s procedure for calculating the nonflat
matrix elements of the potential involves computing
the potential at a random set of points outside the
atomic spheres and fitting to an expansion in terms
of plane waves with spherical subtractions.

Kleinman and Shurtleff’ have improved on Rudge’s
perturbation approach to the nonspherical correc-
tions. They have given formulas for integration
of the radial functions which include the nonspher-
ical contributions to the potential.

They have also suggested a modified type of wave
function in which they retain the plane-wave form
inside the spheres but add terms which correct the
low-I values of the spherical-harmonic expansion
from spherical Bessel functions to accurate radial
functions.

In this paper we adopt a procedure for treating
non- muffin-tin corrections to the APW method
which is very similar to that of Rudge. } We de-
velop detailed formulas for the zinc-blende lattice
and apply the results to silicon. We give the fol-
lowing brief outline of the paper. In Sec. II we
give explicit expressions for the non-muffin-tin
corrections to the APW method for the zinc-blende
lattice. We divide the potential into valence and
jonic (or core) contributions. The potential inside
the atomic spheres is expressed as an expansion
in spherical harmonics derived from a real-space
lattice sum of the ionic potential and a plane-wave
expansion of the valence potential. These repre-
sentations permit a simple calculation of the non-
flat matrix elements. By doing lattice sums only
over the ionic potential which consists simply of
monopoles on lattice sites we reduce the complexity
of Rudge’s multipole sums.

We treat the nonspherical potential by perturba-
tion theory as Rudge has done. By limiting con-
sideration to a selected class of terms with angular
momenta I < 4 and using group theory we need only
ten angular integrals for which we give explicit
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expressions.

In Sec. III we study the convergence and computa-
tional accuracy of the non-muffin-tin APW method
as applied to silicon.

In terms of numbers of plane waves required we
find convergence comparable to the empirical
pseudopotential method and definitely better than
the OPW method. In the spherical terms we have
used I sums up to Iz, =9 although /., =4 gave dif-
ferences of at most 0.05 eV.

We have found contributions as large as 3 eV
due to the nonflat part of the potential whereas the
nonspherical terms contribute at most 0. 4 eV,

We are able to vary the sphere radius of the
atomic spheres from 1.35a, to 2. 154, and find
energies consistent to better than 0.03 eV. This
gives a stringent test of the calculation involving
most of the ingredients of the APW method.

In summary we believe that the approach to the
non-muffin-tin APW corrections presented here
provides an attractive alternative to the OPW
method for band calculations in zinc-blende and

diamond-type lattices.

We should note that A. R. Williams® has recently
derived a generalization of the Green’s-function
method which permits the inclusion of non-muffin-
tin corrections. Practical implementation appears
to require a perturbation treatment of the non-
flat terms which is not necessary in the APW
method.

We should further note that a variety of attempts
have been made to remedy some of the convergence
difficulties of the OPW method by augmenting the
basis set with functions of an atomic character. %*
These methods have been a decided improvement
on the unmodified OPW method. It would be in-
teresting to see the convergence of these modifica-
tions compared directly with the APW method.

II. NON-MUFFIN-TIN CORRECTIONS TO THE APW METHOD

The general method we adopt is very similar
to that of Rudge.® Our applicatfon is to the zinc-
blende and diamond lattices whereas Rudge applied
his results to the bcc lattice. There are many
other points of difference so we will repeat the
derivation in detail.

We introduce the conventional composite APW
wave function

P@) =2 balkn), p1,02>R @.1)
$E)= 2 hau O E)Kla (),

Pm<R, m=12 2.2)

Pr=F+37, Pp=T-37 @.3)

7= (3a, 1a, 1a), (2.4)
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|E,,)=e“i*§")'i' . 2.5)

We choose the origin of T to be midway between
atoms 1 and 2; the origin of P is atom m. a is
the lattice constant. K,, is a reciprocal-lattice
vector,

The K!,(p) are cubic harmonics as defined by
Von der Lage and Bethe’ except that we use the
normalization

JapIKL()2=1, 2. 6)

where the integration is over the unit sphere. The
superscript I refers to the angular momentum of
the spherical representation while ja denote, re-
spectively, the representation and partner function
of the cubic group O,. We use Koster’s notation. ®

The radial functions u7 (p,,, E) are determined by
a numerical solution of the radial Schrodinger
equation

32 (k) Ao vs - £t mr-0.
@.7)

Vo (o) is the spherical part of the potential around
atom m. For the diamond lattice V§(p) does not
depend on m. We use atomic units where e =%=m,
=1 and energy is in double rydbergs. ay=1 is the
Bohr radius

The b, in Eq. (2. 1) are arbitrary coefficients
which will be determined variationally to minimize
the energy. In the usual way this leads to the
APW secular equation.

The c7;, are coefficients which are completely
determined in terms of the b,’s by the requirement
that the wave function be continuous on the sphere
boundaries, p,=R. Itis conventional to make
each plane wave |Kk,) continuous with a set of spher-
ical waves. This overspecification is clearly not
required. The secular equation is the same in
either case.

To obtain the c7;, in terms of the b, we make the
usual spherical harmonic expansion of the plane
waves

|E")=41T(Pm(— En) giljl(knpm) .IZ: K;a(k’n)K;a 6»1) ’
= o

(2. 8)
01, =" T2 0, (k)= T2, 2.9)
we have used the identity
}2 Kjo®)Kjo(0)=2 Yin&) Y1 (), (2. 10)
o ) m

which follows from the unitarity of the transforma-
tion from spherical to cubic harmonics. The cubic
harmonics are real. The m in (2. 10) is not to be
confused with the atom index m in (2. 8).
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Substituting (2. 8) in (2. 1) and equating coeffi-
cients of K,,(0,,) in (2.1) and (2. 2) gives the rela-
tions

4mi’ * < >
Ta= R By & On Inl- Ki 1R KjuR,) .
’ n
(2.11)

We write the total Hamiltonian as a sum of three
parts

H=Hy+Pgxr V+ (1= Pexr) V'™, (2.12)
Hy=T+ (1 - Pgyp) VSPH (2.13)
VSPRE) = VE(on), mns R
where T is the kinetic-energy operator. We have
Pgxr=1, p1,2>R
=0, P1SR or p,<R (2. 14)
V@)= 412D VIp)KIG, pusR  (@.19)

V()= VE) + Ve o), PnsR.  (2.16)

The projection operator Pgyxr serves to divide
the unit cell into regions external and internal to
the atomic spheres. In the internal region the po-
tential is given in terms of a spherical-harmonic
expansion in Eq. (2.15). Vg (p,) is the totally sym-
metric term in the expansion while V¥5(r) is the
sum of all other terms, i.e., the nonspherical
part of the potential. Because of the tetrahedral
site symmetry only the cubic representations
jo=1+ and jo=2- contribute in Eq. (2.15). Only
even (odd) ! are compatible with 1+ (2-). Hence
we don’t need a ja label on V7 (p,,).

The spherical potential Vg (p,,) is used in Eq.
(2.7) to generate the radial functions «7 (o, E) which
are used in the composite wave function of Eq.
(2.2). The nonspherical potential V¥%(t) is treated
perturbatively in the manner of Rudge. ®

In the muffin-tin approximation the external po-
tential is replaced by its average value

Vexr= fP}:-:x'r Vd;/fPEXTd-f 2.17)

Equation (2. 12) can then be written
H=HMT+PEx'r (V- VEXT)"‘ (1= Pgxr) Ve ,(2.18)

HMT =Hy+ Poyr Vexr . (2.19)

The right-hand side of (2.18) then consists of
the muffin-tin Hamiltonian, the nonflat potential,
and the nonspherical potential. In muffin-tin
papers it is conventional to set Vgxr=0. However,
we use a different choice of 0 so we will retain
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this term explicitly.
A. Muffin-Tin Terms

We treat the muffin-tin Hamiltonian H¥T in the
|

(wIHMT—E ’¢> =2 bib, {(ék?- +VEXT_’E> Opne +
nyn’

l

1 max
W1
2 1%
Q=Kk, -K,, cosb,,=K,-K,/k.k, , (2. 21)

where ¢, is defined in Eq. (2.9) and Q is the vol-
ume of the unit cell.

Energies are computed in the usual way by cal-
culating the value of the secular determinant versus
energy and interpolating to zero. Quadratic in-
terpolation was used with three points spaced
0.002 a.u. apart.

B. Nonflat Potential

If the potential V is expressed in a Fourier
series, the matrix elements of Pgx1 V are easily
expressed in terms of the relation

fPEx-reia‘;d;/'U

=58G,0~ (87R%/Q)cos(3Q-7)j1(QR)/Q .  (2.22)

A Fourier series representation is not an ap-
propriate scheme for treating the ionic contribu-
tion to the potential because of its slow conver-
gence. It is a good method for treating the valence-
electron contribution, however. We write

VelE)= 3 VK, )t KT | 2. 23)
K"¢0

The constant term in (2. 23) is taken to be 0. We
should note at this point that the purpose of the
Fourier expansion of (2.23) is primarily to cal-
culate the plane-wave matrix elements of Pgxr V
with the use of (2.22). Obviously, the behavior of
V(r) inside the atomic spheres is irrelevant for
this purpose and it is undoubtedly possible to utilize
a pseudo- V() with better Fourier convergence
which does not reproduce the short-wavelength
charge-density fluctuations deep in the core but
which does accurately describe the potential in the
region external to the atomic spheres. We have
one further degree of freedom in hastening the
Fourier convergence of (2.23), namely, we need
not insist that the ionic charge be integral. In
this way some of the valence charge deep in the

47R?
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standard manner.! In order to avoid orthonormality
problems it is conventional to calculate matrix
elements of (H - E).

For the zinc-blende lattice we have

[2 cos z (_Q’?)[E - Vexr- %azn°ﬁn’)] Lg}”

2+ 1) P (0080 )1 R ) 2 %(Q)(M—’M R]} . (2.20)

dp

atom core which leads to high Fourier components
in V(r) could be incorporated in the ionic potential.
In the interest of simplicity we will not incorporate
any of this flexibility in our formalism. We will
continue to assume that V''(r) represents the com-
plete effective potential of the valence-valence in-
teraction both inside and outside the atomic spheres.
It is convenient to divide the total potential into
a sum of three parts:

V{E)=V([E)+ V) + (1 - Peer) VOO F),  (2.24)
V()= ,? — R,,,I Ve, m=1,2 (2. 25)
(V*(E)=0, (2. 26)
VO™ 0,)= Vo On) + Z/Pms Pm<R . (2.27)

The point-charge potential V*°is a sum of point
charges Z, on the two fcc lattices m=1,2. V,is
the potential of a uniform electron gas of charge
density - (Z, +Z,)/Q sufficient to give charge neu-
trality. V, is also understood to include a con-
stant term of such a magnitude that (2. 26) holds,
i.e., the average point-charge potential is 0.

In Eq. (2.27) the core potential V°°*°(p,,) is de-
fined in such a way as to correct the atom-site
potential from the simple point-charge value to
the ion-core value Vi*®(p,,). It is assumed that the
ion-core potential is accurately Coulombic outside
the atomic spheres.

In the Appendix we show that the point-charge
potential can be expressed in a spherical-harmonic
expansion inside the atomic spheres as follows:

Zm 81 (Z,+25)

ch(ﬁm)=— _;)_ +_Ac mlAt _ 3 - 2

u Z Abpl KL (B
+ Y )™ azﬁ 3-0m)

1=3,17
ZpAS+Z Al .
* 1“42(2 e(_—L——zajﬁm—tlp:nKL(pm)r pmSR .
2. 28)
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Z,, is the point charge on site m, and Z,,. is the With the help of (2. 28) it is then possible to cal-
point charge on the “other” site, i.e., (m=1,m'=2) culate the Fourier components of PgyrV**(r) using
or (m=2,m’=1). The structure constants A§ and the identity Pgxpr=1- (1 - Pgyr). Using also the
A are given numerically in Table I. plane-wave expansion of (2. 8), we have

- N 2 - - .
S Pagave@reiSiai = 35 - —2———4”“""3%% + al) (41rz,,,B,_ 4nR? ———JlégR) (ZnAG+ ZpiAL) + ———,—32”2@*22)3

Z,.A 'K} Z,A+Z A
" 1? ( 1)m+l __L"___'4_7¥'_I_§:(_Q_2 B - ’4228—_1;-!_1".—147”’,1{14-(Q)Bl+1> (2- 29)

= (1- cosQR)/Q?%, (2. 30) The function <p,,,(§) of Eq. (2.9) is decomposed
into ¢,,;(Q):
B,= R’[QRj;(QR)- 2j:(QR)]/Q*, (2.31) - - -
Pm@Q)= Pm1. Q)+ Pm2-@Q) ,
B,=Q'R"™j,(QR), 123. (2.32)
In deriving (2. 32) we have used the identity Pm.(@Q)=cos@-7/2), (2.38)
j;Rp'*zj,(p)dp=R“2j,,,1(R). 2. 33) Pm2-@Q)=i(- 1)" sin@- 7/2) .
C. Nonspherical Potential The sum over the star of @ in (2. 36) can then

. be easily performed:
In Egs. (2.15) and (2. 16) the nonspherical po-

tential V™ () is defined in terms of a spherical- V7 (om) = @m)V2i! 6211 N Qo) @msz(- Qo)

harmonic expansion. Using the decomposition of o

the potential into point-charge, core, and valence % {, AV e = 2. 39

contributions [as in (2. 24)] we note that Eq. (2.29) 1 Q) K;Qo)js@opn) ,  (2.39)

gives us the expansion we require for the point- o s

charge potential. The analogous expansion for the j2=j1%j , (2.40)

valence potential is easily obtained by expanding where N('Q’o) is the number of elements in the star

the Fourier series of (2. 23) according to Eq. (2.8). of Q. The product of the representations in (2. 40)

To keep the notation simple we write the result is easily given as j Xj =1+, (1+)X(2=)=2-.

in genleral and understand that we wish to apply it Following Rudge, ® we compute the matrix ele-

to V' . ments of the nonspherical potential using Eq. (2. 2)
V@E)=@mVE Y, V)KL Gy) , (2. 34) with the radial functions determined from the spher-

ical potential as in Eq. (2.7). This is roughly

V(f): 26 17(6) eté-i , (2. 35) equivalent to treating the nonspherical potential

by first-order perturbation theory. We find that
- _ 172,05 . PN - in silicon the nonspherical contribution to the va-
F(om)= 1) 21" L5 on(- Q VK Q)i+ @pn) - lence energies are at most 0.4 eV so that Rudge’s
(2. 36) treatment should be good whenever energy gaps

between stat f the t id
j =1+ or 2— because of the tetrahedral site sym- ween es o same symmetry considerably

metry. We can use symmetry to sum over the
star of Qo, Q RQO, where R is a cubic operation.

We require irreducibly transforming functions. TABLE I. Dimensionless lattice-sum coefficients for
For the potential we define f} P Q): the fcc, diamond, and zinc-blende lattices.
~ - ~ - ~ - 1 A¢ At
VL@Q=:[VQ)+ V(- Q)], : :
(2.37) 0 4.5848620 0.8019360
R I 3 0 —106.29
Ve-Q)=2[VQ)- V(= Q) , 4 11.644 153.838
- 5 0 0
where V;, is symmetric under inversion about the 6 74.0677 —867.311
origin while V,_is antisymmetric. Naturally V,._ 7 0 1836.76
8 —-97.2070 —1345.33

is zero in the diamond lattice.
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exceed this value.

If this correction becomes serious the present
approach can be easily extended to include the
computation and diagonalization of V™ as a small
submatrix connecting the unperturbed bands. Be-
cause of the small value of V™ the size of the sub-
matrix will always be quite small.

In computing the nonspherical contributions we
have used only the =3 and I =4 contributions to
the potential. Higher terms should be much

smaller. Calling these terms V3 and V, we have
@|vile)
- ; T ja CTy3a (WT 0| VT O 47, (o))
X {11} 0, 1=3,4 (2.41)
{11:3ha= @)% [GBELGKLGIKER),  (2.42)
{18} = @02 [PELGKLGKED) . (2.43)

In (2.42), I'yy is the outer product of the repre-
sentations I',.xI';,. These cubic Clebsch-Gordan
coefficients are given in Koster’s group-theory
tables.® The integrals over cubic harmonics given
in (2. 42) and (2. 43) can be expressed in terms of
spherical Clebsch-Gordan coefficients but for our
needs it is just as easy to calculate them directly.
Cubic rotational invariance requires that {7,1,3};,
and {I,1,4},, are independent of .

We have included all possible couplings of
1,=0,1,2with [,=0, 1, 2,3,4 in Eq. (2.41) but have
ignored couplings of 7,=3, 4 with I,=3, 4 as well
as coupling of all higher-I values.

With these restrictions there are just four values
of {1,1,3}; and six of {I,1,4}; which are required.

TABLE II. Cubic-harmonic coupling integrals {lilzl},.
See Egs. (2.42) and (2.43). jis a cubic representation
in the notation of Ref. 8.

{033},=1

{123}, =v3NT
{143}, =2/VT
{323},.=-%
{044}, =1

{134}, =%

{224}, =BT
{224}5,=-2/V21
{244}, =2 /V7
{e4aks,=— 4 VT

KANE é

TABLE III. Energy levels at " in eV. Lowest valence

levels of the indicated symmetry in Koster’s notation and
the standard band notation.

Ts. 14.41 Ty
Ty. 17.61 Ty5
Ty. 18.17 Ty

For convenience, these quantities are listed in
Table II.

III. CONVERGENCE AND COMPUTATIONAL ACCURACY

We have‘applied the method of Sec. II to the study
of the band structure of silicon. We have used the
valence-electron charge density given by Brinkman
and Goodman. ® We have also used their results
for the Slater approximation to exchange involving
the valence electrons. We have treated the inter-
action with the ionic core by fitting to the atomic
term levels of Si3* in a manner similar to Heine
and Abarenkov.'® Our results for the important
levels at the T point are given in Table III in eV.
Because of our different method of treating the
core interactions we differ by as much as 0.7
eV from Brinkman and Goodman’s results. We
discuss the potential and band structure of
silicon at length in another publication.!* For the
present we are interested in the convergence prop-
erties and computational accuracy of our method.
We do not expect these results to depend sensitively

TABLE IV. Convergence of energy levels at I as a
function of the number of plane waves # in the secular
equation. Energies in double Ry. Atomic sphere radius
is 2.15 Bohr radii. Numbers in parentheses are OPW
values of Ref. 12.

n Ty.t) T'5 (r) — T'5.(307) Ty ln)
- I‘z_ (339) - 1"4_ (307)
9
15 0.00102 0.0275
27 0.013 5, (0.058) 0.00972
51 0.000923 0.005 21 0.006 32
59 0.000061 0.001 04, (0.019) 0.00135
65 0.00131
89 0.000022 0.000 505 0.000 299
113 0.000021 0.000 157
137 0.000013 0.000 057, (0.0040) 0.000126
145 0.000005 0.000044
169 0.000 029
181 0.000013
229 —0.000008
253 0.000 006, (0.0015) 0.000001
259 —0.000030
283
307 0.000 000 0.000000
331
339 0.000000
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on the choice of potential.

The “figure of merit” for a band-structure cal-
culation is generally considered to be the size of
the secular equation which must be manipulated in
order to obtain the eigenvalues. For the OPW and
APW methods this is the number of “plane waves”
used. In Table IV we tabulate this convergence
for the lowest valence levels at T" of the indicated
symmetry. The number of plane waves » is the
value which would be required without making use
of symmetry. By comparing these results to the
recent OPW study of silicon by Stukel and Euwema'
it can be seen that the APW method is significantly
more rapidly convergent. This result is to be
expected because of the much better treatment of
the wave function inside the atomic spheres. The
plane-wave expansion is only called on to repre-
sent the wave function outside the spheres.

The Korringa-Kohn-Rostoker (KKR)13 method
requires a secular equation which is even smaller
than the APW method. However, this method re-
quires a muffin-tin approximation in the usual
treatments. See Ref. 6, however. We have tested
the muffin-tin approximation for silicon and have
found it to be quite unsatisfactory. The changes
in the energy levels at I' and the indirect gap Eg
owing to making the muffin-tin approximation are
shown in Table V. The most serious change is in
the indirect gap which is shifted by 3.4 eV. The
shifts due to the nonspherical parts of the potential
inside the atomic spheres are also noted in Table
V. These are seen to be much smaller than the
muffin-tin errors but still are not negligible.
Since the shifts are less than 0.4 eV we felt that
our perturbative method of calculation is satisfac-
tory. When bands of the same symmetry come
close in energy it would be desirable to treat the
anisotropy corrections more accurately by dia-
gonalizing a small submatrix.

In performing the I sum in Eq. (2.20) we have
gone up to I, =9. The difference between I, =9
and I, =4 was at most 0. 05 eV so we feel that
lmax=9 is more than adequately large.

2

TABLE V. Numbers in the right-hand column give the
energy shift of the principal levels at I' and the indirect
gap Eg due to the nonspherical potential inside the atomic
spheres. Left-hand column gives the muffin-tin shifts
due to the nonspherical potential plus the nonflat-potential
outside the atomic spheres. Energies in eV.

E (non-muffin-tin) E(anisotropy)

— E (muffin-tin) — E (spherical)
5T, -1.16 -0.392
oT,. 0.582 0.210
6T, 0.577 0.218
8Eg 3.43 0.128
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TABLE VI. Energy shifts of the principal levels at T’
due to changing the atomic sphere radius R. R in Bohr
radii, energy in eV.

E(R=2.15) E(R=2.15)

—E(R=1.75) -E(R=1,35)
6T, 0.020 0.013
£ 0.0095 0.0049
6Ty 0.017 0.032

The use of a non-muffin-tin method permits us
to vary the atomic sphere radius R. The maximum
possible value where the spheres touch is R,
=4V3a. For silicon where a=10. 2634y, Ry
=2.22a,. We have generally used R =2. 15 Bohr
radii. We have also tested our results for smaller
values of R and have found the expected result
that for smaller values of R the number of plane
waves required for convergence is greater. Hence
it appears that the largest value of R is best for
computational purposes. The change in the prin-
cipal levels at I in going from R=2, 15 to 1.75 and
1. 35 are given in Table VI. The maximum varia-
tion is 0.03 eV. At the present time we are not
sure of the source of this discrepancy. The anisot-
ropy corrections should be very small for R= 1. 35.
Hence this calculation gives a limit on the error
in our method of treating these nonspherical cor-
rections. It also provides a useful check on the
calculation in general since many of the details
depend on the size of the sphere radius.

Table IV indicates that in order to achieve 0. 03-
eV accuracy 60 plane waves are needed. In order
to reduce the matrix size as much as possible
without losing accuracy we make a Lowdin trans-
formation. * This transformation divides states
into two classes: 1,j in class A and J in class B.
Interactions between states in A and states in B
are treated perturbatively while interactions be-
tween states in A are treated exactly. The matrix
element &;; then is renormalized to

> hishy; .

hyj=h;+
HETHT eshys—E

3.1)
In our calculations we have divided the APW plane
waves into sets A and B by the inequalities
@/2mYki< 9, k;in A
. 3.2)
9<(@/2m?k%<19.5, k;inB .
For this choice of A and B we estimate the con-
vergence error in the APW method to be < 0.03
evV.

The convergence is quite comparable to the em-
pirical pseudopotential method. The difference is
that the matrix elements of the Hamiltonian are
much easier to compute in the empirical pseudo-
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potential approach.

IV. SUMMARY

A. Broad Summary

To summarize, we have presented a practical
scheme for treating the non-muffin-tin corrections
to the APW method for the zinc-blende lattice.

We have tested the method on silicon. The con-
vergence in terms of plane waves is significantly
better than the OPW method and is comparable to
the empirical pseudopotential method. The non-
muffin-tin corrections are of two types: “nonflat”
and “nonspherical.” The nonflat corrections may
be as large as 3.4 eV while the nonspherical cor-
rections are less than 0.4 eV. The latter are
treated by first-order perturbation theory while
the former are treated exactly. Sixty plane waves
lead to results accurate to ~0.03 eV for a sphere
radius R=2.15a,. The number of plane waves

required for convergence increases as R decreases.

The converged results are independent of sphere
radius for R between 2. 154, and 1. 35a, with an
accuracy of better than 0.03 eV.
We should note that band calculations on tetra-
hedrally bonded II- VI compounds have obtained
(better results using the muffin-tin potential’® than
might have been expected from the results reported
here. However, recent results of Walter and
Cohen® show that the bond charge in II- VI com-
pounds is significantly smaller than in the purely
covalent column IV compounds. For this reason,
it seems reasonable to expect that the muffin-tin
potential will become a better approximation as
we move from covalent to more ionic materials.

B. Detailed Summary

In Eq. (2.18) we have broken up the Hamiltonian
into muffin-tin, nonflat, and nonspherical con-
tributions. For reference, the muffin-tin secular
equation is given in Eq. (2.20). To treat the non-
flat potential we simply add the plane-wave matrix

elements of the potential outside the atomic spheres.

This is easily obtained from Eq. (2. 22) for a single
Fourier component. Fourier expansion is a good
way to treat the valence-electron contribution but
it converges slowly for the ionic potential.

In Eq. (2.28) we give a spherical-harmonic rep-
resentation of the point-charge potential V*® which
is used in (2. 29) to give the Hamiltonian matrix
elements.

The nonspherical potential is treated by pertur-
bation theory using the radial functions computed
from the spherical potential in Eq. (2.7). We
use the =3 and I =4 components of the nonspher-
ical potential which are obtained from Eq. (2. 28)
for the point-charge potential and Eq. (2.36) or
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(2. 39) for the valence-charge potential. The ma-
trix elements of the nonspherical perturbation are
given in Eq. (2.41). The spherical-harmonic coef-
ficients c7j, are given in terms of the plane-wave
coefficients b, in Eq. (2.11). The angular integrals
{1,1,1}, are given in Table II. The radial integrals
must be obtained numerically.
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APPENDIX: MULTIPOLE EXPANSION OF THE POINT-
< CHARGE POTENTIAL ENERGY

We are interested in the potential energy due to
an array of point charges located on the zinc-blende
lattice, namely,

Zm Zml

>, =Ly,
& 1pm=RM |

c 1 = - —
R
(A1)
where V is the potential of a uniform distribution
of electronic charge sufficient to guarantee charge
neutrality, plus a constant such that the average
value of V*°(r) is zero.

The sums in Eq. (Al) are over the two inter-
penetrating fcc lattices which constitute the zinc-
blende lattice. The sum on ﬁ’,:‘ is over the fcc lat-
tice which includes lattice site m. This lattice
has full cubic symmetry with respect to rotations
about lattice site m. The sum on R™ is over the
fcc lattice which is tetrahedrally oriented with re-
spect to lattice site m.

By using a multipole expansion of the form

4 T L _L@_JJE <R
m—Rl DR @ P
(A2)
we can express Eq. (Al)in the form
- Zw Z Z 87 (Zy+2Z,)
pC —_“Zm  “ZmApc m | 1 2) 2
1% (pm)" Pm + a A0+ a AO 3 a! m

+ ”Z> TI{Z A +Zm'A€}K;a(5m), (As)
Yo

a(Rn
AS=_4n Z —4———,—,21+1)(R,,./a) : (A4)

with an exactly analogous formula for A} with R™
substituted for R™.

Because of the cubic symmetry only Kl,(R’") con-
tributes to A§. Al receives contributions from
K! (™) and KL (R™), which are both totally sym-
metric under the tetrahedral group. These lattice
sums are easily evaluated numerically by direct
summation. Optimum convergence is obtained by
summing over lattice shells which form the closest
possible approximation to a sphere since a truly
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spherical shell would make a zero contribution.
The values are tabulated in Table I.

The term in p? comes from the electron gas and
corresponds to a uniform charge density of
— (Z1+Z,)/Q. This can be checked by computing
v2V. The terms A{ and A§ can be expressed in
terms of the potential in a simple-cubic lattice
which has been computed by Takahasi and Sakamoto
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using an Ewald method.'” In terms of their func-
tions ¥ and § we have

A§=9(0)+3¢(3, 2,0),
(A.5)
A(tl= 4¢(%» 7!1_’ %) .

These values are also included in Table I.
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